The goal of this work is to give precise bounds on the counting complexity of a family of generalized coloring problems (list homomorphisms) on bounded-treewidth graphs. Given graphs $G$, $H$, and lists $L(v)\subseteq V(H)$ for every $v\in V(G)$, a {\em list homomorphism} is a function $f:V(G)\to V(H)$ that preserves the edges (i.e., $uv\in E(G)$ implies $f(u)f(v)\in E(H)$) and respects the lists (i.e., $f(v)\in L(v))$. Standard techniques show that if $G$ is given with a tree decomposition of width $t$, then the number of list homomorphisms can be counted in time $|V(H)|^t\cdot n^{\mathcal{O}(1)}$. Our main result is determining, for every fixed graph $H$, how much the base $|V(H)|$ in the running time can be improved. For a connected graph $H$ we define $\operatorname{irr}(H)$ the following way: if $H$ has a loop or is nonbipartite, then $\operatorname{irr}(H)$ is the maximum size of a set $S\subseteq V(H)$ where any two vertices have different neighborhoods; if $H$ is bipartite, then $\operatorname{irr}(H)$ is the maximum size of such a set that is fully in one of the bipartition classes. For disconnected $H$, we define $\operatorname{irr}(H)$ as the maximum of $\operatorname{irr}(C)$ over every connected component $C$ of $H$. We show that, for every fixed graph $H$, the number of list homomorphisms from $(G,L)$ to $H$ * can be counted in time $\operatorname{irr}(H)^t\cdot n^{\mathcal{O}(1)}$ if a tree decomposition of $G$ having width at most $t$ is given in the input, and * cannot be counted in time $(\operatorname{irr}(H)-\epsilon)^t\cdot n^{\mathcal{O}(1)}$ for any $\epsilon>0$, even if a tree decomposition of $G$ having width at most $t$ is given in the input, unless the #SETH fails. Thereby we give a precise and complete complexity classification featuring matching upper and lower bounds for all target graphs with or without loops.
翻译:这项工作的目标是在限制的树枝图形中,对通用彩色问题家族复杂性的计算设定精确的界限 {(G)至 V(H), 保存边緣( 即, 美元) E( G) 的( 美元) ; 美元( 美元) ; 如果图形 $( 美元), 并列出$( 5)\ subsete V( H) $( 美元) 。 标准技术显示, 如果给$( 美元) 的树时间位置是宽度, 那么列表的光度数量可以计算在时间 $( H) 上( 美元), 美元( 美元) E( G) $( 美元) 意味着 美元( f( ) 美元( 美元), 并尊重列表( 美元) 。 美元( 美元( 美元), 美元( 美元) 最高值是 。