We consider the problem of sampling and approximately counting an arbitrary given motif $H$ in a graph $G$, where access to $G$ is given via queries: degree, neighbor, and pair, as well as uniform edge sample queries. Previous algorithms for these tasks were based on a decomposition of $H$ into a collection of odd cycles and stars, denoted $\mathcal{D}^*(H)=\{O_{k_1}, \ldots, O_{k_q}, S_{p_1}, \ldots, S_{p_\ell}\}$. These algorithms were shown to be optimal for the case where $H$ is a clique or an odd-length cycle, but no other lower bounds were known. We present a new algorithm for sampling and approximately counting arbitrary motifs which, up to $\textrm{poly}(\log n)$ factors, is always at least as good as previous results, and for most graphs $G$ is strictly better. The main ingredient leading to this improvement is an improved uniform algorithm for sampling stars, which might be of independent interest, as it allows to sample vertices according to the $p$-th moment of the degree distribution. Finally, we prove that this algorithm is \emph{decomposition-optimal} for decompositions that contain at least one odd cycle. These are the first lower bounds for motifs $H$ with a nontrivial decomposition, i.e., motifs that have more than a single component in their decomposition.


翻译:我们考虑的是抽样问题,并大致计算一个任意给定的美元元值,在一张G$的图表中,通过以下查询访问$G$:度、邻里和对等,以及统一的边缘抽样查询。这些任务以前的算法基于将$H美元分解成奇数周期和恒星的集合,用$mathcal{D}(H) ⁇ ⁇ {O ⁇ {O ⁇ k_q}、O ⁇ k_q}、S ⁇ p_ri}、aldots,S ⁇ p ⁇ ell}。这些算法被显示是最佳的,因为当美元是一个奇数周期或奇数周期时,但这些任务以前的算法基于将$H美元分解分解成奇数的集合。我们提出一个新的算法,大约算出任意的motif,直到$textr{H值的计算结果都比以前好得多,对于大多数图表来说,美元正数是绝对好的。导致这一改进的主要要素是最低的美元分解法值,最终可以让一个样本的分解程度。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员