We study two-pass streaming algorithms for \textsf{Maximum Bipartite Matching} (\textsf{MBM}). All known two-pass streaming algorithms for \textsf{MBM} operate in a similar fashion: They compute a maximal matching in the first pass and find 3-augmenting paths in the second in order to augment the matching found in the first pass. Our aim is to explore the limitations of this approach and to determine whether current techniques can be used to further improve the state-of-the-art algorithms. We give the following results: We show that every two-pass streaming algorithm that solely computes a maximal matching in the first pass and outputs a $(2/3+\epsilon)$-approximation requires $n^{1+\Omega(\frac{1}{\log \log n})}$ space, for every $\epsilon > 0$, where $n$ is the number of vertices of the input graph. This result is obtained by extending the Ruzsa-Szemer\'{e}di graph construction of [GKK, SODA'12] so as to ensure that the resulting graph has a close to perfect matching, the key property needed in our construction. This result may be of independent interest. Furthermore, we combine the two main techniques, i.e., subsampling followed by the \textsc{Greedy} matching algorithm [Konrad, MFCS'18] which gives a $2-\sqrt{2} \approx 0.5857$-approximation, and the computation of \emph{degree-bounded semi-matchings} [EHM, ICDMW'16][KT, APPROX'17] which gives a $\frac{1}{2} + \frac{1}{12} \approx 0.5833$-approximation, and obtain a meta-algorithm that yields Konrad's and Esfandiari et al.'s algorithms as special cases. This unifies two strands of research. By optimizing parameters, we discover that Konrad's algorithm is optimal for the implied class of algorithms and, perhaps surprisingly, that there is a second optimal algorithm. We show that the analysis of our meta-algorithm is best possible. Our results imply that further improvements, if possible, require new techniques.


翻译:我们为\ textsf{ Maxim bipartite 匹配} (\ textsf{ MBM}) 研究双通流算法。 所有已知的 textsf{ MB} 的双通流算法都以类似的方式运作 : 它们计算第一个通路的最大匹配值, 并在第二个通路找到 3 增强匹配值 。 我们的目的是探索这个方法的局限性, 并确定当前技术能否用来进一步改进当前运算法 。 [ 183} 。 我们给出以下结果 : 我们显示, 每两个通通程的流算法, 仅计算第一个通路的最大匹配值 。 $( 2/3\ eepsl) 美元, 以增加第一个通路口的匹配量 。 每个通路口的匹配量 。

0
下载
关闭预览

相关内容

专知会员服务
82+阅读 · 2020年12月5日
【NeurIPS2020】图神经网络中的池化再思考
专知会员服务
51+阅读 · 2020年10月25日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
37+阅读 · 2020年8月22日
【Java实现遗传算法】162页pdf,Genetic Algorithms in Java Basics
专知会员服务
42+阅读 · 2020年7月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【论文】本体匹配实体对齐知识融合入门论文推荐
深度学习自然语言处理
25+阅读 · 2020年3月8日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
【 关关的刷题日记47】Leetcode 38. Count and Say
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
0+阅读 · 2021年9月16日
Arxiv
0+阅读 · 2021年9月16日
VIP会员
相关资讯
【论文】本体匹配实体对齐知识融合入门论文推荐
深度学习自然语言处理
25+阅读 · 2020年3月8日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
【 关关的刷题日记47】Leetcode 38. Count and Say
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员