Modern data aggregation often takes the form of a platform collecting data from a network of users. More than ever, these users are now requesting that the data they provide is protected with a guarantee of privacy. This has led to the study of optimal data acquisition frameworks, where the optimality criterion is typically the maximization of utility for the agent trying to acquire the data. This involves determining how to allocate payments to users for the purchase of their data at various privacy levels. The main goal of this paper is to characterize a fair amount to pay users for their data at a given privacy level. We propose an axiomatic definition of fairness, analogous to the celebrated Shapley value. Two concepts for fairness are introduced. The first treats the platform and users as members of a common coalition and provides a complete description of how to divide the utility among the platform and users. In the second concept, fairness is defined only among users, leading to a potential fairness-constrained mechanism design problem for the platform. We consider explicit examples involving private heterogeneous data and show how these notions of fairness can be applied. To the best of our knowledge, these are the first fairness concepts for data that explicitly consider privacy constraints.


翻译:现代数据汇总往往采取从用户网络收集数据的平台形式。这些用户现在比以往更要求以隐私保障的方式保护他们提供的数据。这导致了对最佳数据获取框架的研究,其中最佳性标准通常是尽量扩大试图获取数据的代理商的效用。这涉及确定如何在不同隐私级别上向用户分配款项,用于购买其数据。本文件的主要目标是确定一个公平数额,在特定隐私级别上向用户支付数据。我们提出了一个与著名的Shapley价值相类似的公平原则定义。引入了两个公平概念。首先将平台和用户视为共同联盟的成员,并完整描述如何在平台和用户之间划分效用。在第二个概念中,公平仅由用户来界定,导致平台的潜在公平约束机制设计问题。我们考虑了涉及私人混杂数据的明确例子,并展示了这些公平概念是如何应用的。我们最了解的是,这些是明确考虑隐私制约的数据的第一个公平概念。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
20+阅读 · 2022年10月10日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员