Current vision-based robotics simulation benchmarks have significantly advanced robotic manipulation research. However, robotics is fundamentally a real-world problem, and evaluation for real-world applications has lagged behind in evaluating generalist policies. In this paper, we discuss challenges and desiderata in designing benchmarks for generalist robotic manipulation policies for the goal of sim-to-real policy transfer. We propose 1) utilizing high visual-fidelity simulation for improved sim-to-real transfer, 2) evaluating policies by systematically increasing task complexity and scenario perturbation to assess robustness, and 3) quantifying performance alignment between real-world performance and its simulation counterparts.
翻译:暂无翻译