Facial image inpainting, with high-fidelity preservation for image realism, is a very challenging task. This is due to the subtle texture in key facial features (component) that are not easily transferable. Many image inpainting techniques have been proposed with outstanding capabilities and high quantitative performances recorded. However, with facial inpainting, the features are more conspicuous and the visual quality of the blended inpainted regions are more important qualitatively. Based on these facts, we design a foreground-guided facial inpainting framework that can extract and generate facial features using convolutional neural network layers. It introduces the use of foreground segmentation masks to preserve the fidelity. Specifically, we propose a new loss function with semantic capability reasoning of facial expressions, natural and unnatural features (make-up). We conduct our experiments using the CelebA-HQ dataset, segmentation masks from CelebAMask-HQ (for foreground guidance) and Quick Draw Mask (for missing regions). Our proposed method achieved comparable quantitative results when compare to the state of the art but qualitatively, it demonstrated high-fidelity preservation of facial components.
翻译:显性图象涂漆是一件非常艰巨的任务。 这是因为关键面部特征( 部件) 的细微纹理( 部件) 不容易转移。 许多图像涂色技术已经提出, 并记录了大量的量性性性能。 然而, 面部涂漆, 特征更加显眼, 混合涂漆区域的视觉质量则更为重要 。 基于这些事实, 我们设计了一个前方制导面部涂色框架, 可以利用相向神经网络层提取和生成面部特征。 它引入了使用前方分解面部面部面部面部面部面部面部面部面部面部面部面部面部面部面部面部面部面部面部面部面部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部