As we grant artificial intelligence increasing power and independence in contexts like healthcare, policing, and driving, AI faces moral dilemmas but lacks the tools to solve them. Warnings from regulators, philosophers, and computer scientists about the dangers of unethical artificial intelligence have spurred interest in automated ethics-i.e., the development of machines that can perform ethical reasoning. However, prior work in automated ethics rarely engages with philosophical literature. Philosophers have spent centuries debating moral dilemmas so automated ethics will be most nuanced, consistent, and reliable when it draws on philosophical literature. In this paper, I present an implementation of automated Kantian ethics that is faithful to the Kantian philosophical tradition. I formalize Kant's categorical imperative in Dyadic Deontic Logic, implement this formalization in the Isabelle theorem prover, and develop a testing framework to evaluate how well my implementation coheres with expected properties of Kantian ethic. My system is an early step towards philosophically mature ethical AI agents and it can make nuanced judgements in complex ethical dilemmas because it is grounded in philosophical literature. Because I use an interactive theorem prover, my system's judgements are explainable.


翻译:当我们赋予人工智能在医疗保健、警务和驾驶等环境中增加权力和独立性时,AI面临道德难题,但却缺乏解决这些难题的工具。监管者、哲学家和计算机科学家关于不道德人工智能危险的警告激发了人们对自动伦理学(即,能进行道德推理的机器的开发)的兴趣。然而,以前在自动化伦理学方面的工作很少与哲学文献接触。哲学家花几个世纪辩论道德难题,因此,自动化伦理学在引用哲学文献时将是最微妙、一致和可靠的。在本文中,我介绍了一个忠于Kantian哲学传统的自动Kantian伦理学的实施。我在Dyadic Deontic Locic中将Kant绝对的迫切要求正式化为Dyadic Deontic Loc,在Isabelle theorem验证中实施这种正规化,并开发一个测试框架来评价我的执行与Kantian伦理学的预期特性之间的良好关系。我的系统是走向哲学上成熟的伦理学代理人的早期一步,它可以在复杂的伦理难题中作出细微的判断,因为它是哲学文献中的基础。因为我使用了互动的判断,所以可以解释我的系统。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月19日
Arxiv
0+阅读 · 2022年9月17日
Arxiv
0+阅读 · 2022年9月16日
The Fragility of Optimized Bandit Algorithms
Arxiv
0+阅读 · 2022年9月15日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
92+阅读 · 2021年5月17日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2022年9月19日
Arxiv
0+阅读 · 2022年9月17日
Arxiv
0+阅读 · 2022年9月16日
The Fragility of Optimized Bandit Algorithms
Arxiv
0+阅读 · 2022年9月15日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
92+阅读 · 2021年5月17日
Arxiv
14+阅读 · 2020年12月17日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员