The Medico: Multimedia Task 2020 focuses on developing an efficient and accurate computer-aided diagnosis system for automatic segmentation [3]. We participate in task 1, Polyps segmentation task, which is to develop algorithms for segmenting polyps on a comprehensive dataset. In this task, we propose methods combining Residual module, Inception module, Adaptive Convolutional neural network with U-Net model, and PraNet for semantic segmentation of various types of polyps in endoscopic images. We select 5 runs with different architecture and parameters in our methods. Our methods show potential results in accuracy and efficiency through multiple experiments, and our team is in the Top 3 best results with a Jaccard index of 0.765.
翻译:美第奇科:多媒体任务2020侧重于开发一个高效、准确的计算机辅助自动分解诊断系统[3];我们参与任务1(聚合分解任务),即开发综合数据集中分解聚虫的算法;在此任务中,我们提出将残余模块、感知模块、适应性动态神经网络与U-Net模型相结合的方法,以及用于内窥图像中各类聚虫的分解的PraNet方法相结合的方法;我们选择了5个运行模式和方法中不同的结构和参数。我们的方法通过多个实验显示在准确性和效率方面的潜在结果,我们的团队在最高3级取得最佳结果,而积分指数为0.765。