We study random graphs with latent geometric structure, where the probability of each edge depends on the underlying random positions corresponding to the two endpoints. We focus on the setting where this conditional probability is a general monotone increasing function of the inner product of two vectors; such a function can naturally be viewed as the cumulative distribution function of some independent random variable. We consider a one-parameter family of random graphs, characterized by the variance of this random variable, that smoothly interpolates between a random dot product graph and an Erd\H{o}s--R\'enyi random graph. We prove phase transitions of detecting geometry in these graphs, in terms of the dimension of the underlying geometric space and the variance parameter of the conditional probability. When the dimension is high or the variance is large, the graph is similar to an Erd\H{o}s--R\'enyi graph with the same edge density that does not possess geometry; in other parameter regimes, there is a computationally efficient signed triangle statistic that distinguishes them. The proofs make use of information-theoretic inequalities and concentration of measure phenomena.


翻译:我们用潜伏几何结构研究随机图,其中每个边缘的概率取决于与两个端点相对应的底部随机位置。 我们侧重于该有条件概率是两个矢量内产物的一般单质增加函数的设定; 这种函数自然可以被视为某个独立随机变量的累积分布函数。 我们考虑随机图的一参数组,以该随机变量的差异为特征,在随机点产品图和Erd\H{o}s-R\'enyi随机图之间顺畅的插图。 我们证明这些图中测出几何的阶段过渡, 其范围是基本几何空间的尺寸和条件概率的差异参数。 当尺寸高或差异大时, 该图与Erd\H{o}s-R\'enyi图表相似, 其边缘密度与不具有几何特性的相同; 在其他参数系统中, 有一种具有计算效率的签名三角统计, 将其区分为它们。 证据使用信息- 实验性不平等和测量现象的浓度。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月27日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员