We present a deep imitation learning framework for robotic bimanual manipulation in a continuous state-action space. A core challenge is to generalize the manipulation skills to objects in different locations. We hypothesize that modeling the relational information in the environment can significantly improve generalization. To achieve this, we propose to (i) decompose the multi-modal dynamics into elemental movement primitives, (ii) parameterize each primitive using a recurrent graph neural network to capture interactions, and (iii) integrate a high-level planner that composes primitives sequentially and a low-level controller to combine primitive dynamics and inverse kinematics control. Our model is a deep, hierarchical, modular architecture. Compared to baselines, our model generalizes better and achieves higher success rates on several simulated bimanual robotic manipulation tasks. We open source the code for simulation, data, and models at: https://github.com/Rose-STL-Lab/HDR-IL.
翻译:我们提出在连续的状态行动空间内进行机器人双体操纵的深度模拟学习框架。核心挑战是将操纵技能推广到不同地点的物体上。我们假设模拟环境中的关系信息能够大大改进一般化。为了实现这一点,我们提议(一) 将多模式动态分解成元素运动原始体,(二) 利用经常性的图形神经网络将每个原始体参数化,以捕捉相互作用,(三) 整合一个高层次的规划师,该规划师依次组成原始体,一个低级别的控制员,将原始动力和反动运动控制结合起来。我们的模型是一个深层次的、等级的、模块结构。与基线相比,我们的模型比较,在几项模拟的双体机器人操纵任务中,将模型集成得更好,并取得了更高的成功率。我们在以下网站打开模拟、数据和模型的代码:https://github.com/rose-STL-Lab/HDRD-IL。