Visual place recognition (VPR) is an essential component of robot navigation and localization systems that allows them to identify a place using only image data. VPR is challenging due to the significant changes in a place's appearance under different illumination throughout the day, with seasonal weather and when observed from different viewpoints. Currently, no single VPR technique excels in every environmental condition, each exhibiting unique benefits and shortcomings. As a result, VPR systems combining multiple techniques achieve more reliable VPR performance in changing environments, at the cost of higher computational loads. Addressing this shortcoming, we propose an adaptive VPR system dubbed Adaptive Multi-Self Identification and Correction (A-MuSIC). We start by developing a method to collect information of the runtime performance of a VPR technique by analysing the frame-to-frame continuity of matched queries. We then demonstrate how to operate the method on a static ensemble of techniques, generating data on which techniques are contributing the most for the current environment. A-MuSIC uses the collected information to both select a minimal subset of techniques and to decide when a re-selection is required during navigation. A-MuSIC matches or beats state-of-the-art VPR performance across all tested benchmark datasets while maintaining its computational load on par with individual techniques.


翻译:摘要:视觉地点识别(VPR)是机器人导航和定位系统的重要组成部分,它使其能够仅使用图像数据来识别一个地点。由于在一天的不同时间段,季节性天气以及从不同视点观察时,一个地点的外观发生了显著变化,因此VPR具有挑战性。目前,没有单一的VPR技术在每个环境条件下表现出色,每种技术都具有独特的优势和不足之处。因此,在变化环境中,结合多种技术的VPR系统可以实现更可靠的VPR性能,但代价是更高的计算负荷。为解决这个问题,我们提出了一种自适应VPR系统,称为自适应多自身识别和修正(A-MuSIC)。我们首先开发了一种方法,通过分析匹配查询的帧间连续性,收集VPR技术的运行时间性能信息。然后演示如何在静态技术集上操作该方法,生成有关哪些技术对当前环境作出最大贡献的数据。 A-MuSIC使用收集的信息来选择最少的技术子集,并决定在导航过程中何时需要进行重新选择。A-MuSIC与所有测试基准数据集的最先进的VPR性能相匹配或超越其性能,同时保持其计算负荷的水平与单独的技术相当。

0
下载
关闭预览

相关内容

说话人识别(Speaker Recognition),或者称为声纹识别(Voiceprint Recognition, VPR),是根据语音中所包含的说话人个性信息,利用计算机以及现在的信息识别技术,自动鉴别说话人身份的一种生物特征识别技术。 说话人识别研究的目的就是从语音中提取具有说话人表征性的特征,建立有 效的模型和系统,实现自动精准的说话人鉴别。
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CVPR 2021 论文盘点-人脸识别篇
CVer
2+阅读 · 2022年5月25日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】CVI-SLAM –协同视觉惯性SLAM
泡泡机器人SLAM
21+阅读 · 2018年12月18日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
CVPR 2021 论文盘点-人脸识别篇
CVer
2+阅读 · 2022年5月25日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】CVI-SLAM –协同视觉惯性SLAM
泡泡机器人SLAM
21+阅读 · 2018年12月18日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员