项目名称: 人体运动视觉分析中的动态隐结构模型研究
项目编号: No.61273285
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 赵旭
作者单位: 上海交通大学
项目金额: 81万元
中文摘要: 人体及其运动具有高度的结构化特性,这一特性对人体运动视觉分析的三个基本问题:人体的分割、姿态估计和动作识别具有重要意义。通过建立判别式隐结构模型,可以把底层视觉观测和高层语义通过一个结构化的隐变量层有效沟通起来,从而使人体运动分析的三个基本问题有望在一个框架内高效解决。本项目系统研究人体运动分析中动态隐结构模型的理论架构和求解策略,以及在此框架下整合解决人体分割、姿态估计和动作识别的计算方法。并研究检测、表示与匹配全局和局部人体视觉特征的有效方法,为以动态隐结构模型为核心的人体运动分析提供紧凑而富含信息量的视觉观测特征。本项目提出的针对序列图像的动态隐结构的理论研究以及在其框架内进行人体运动分析三个基本问题的整合求解,可对时间序列上的人体运动同时进行线(时间)和面(图像)上的隐结构建模,是本项目的主要创新和特色。
中文关键词: 人体动作识别;人体姿态估计;人体检测;人体再识别;隐结构
英文摘要: Human body and its motion is highly strcutured due to the articulated skeleton configuration of human body.This characteristic is critical to solve the three basic problems of visual anaysis of human motion, namely, people segmentation, pose estimation and action recognition. By constructing the framework of discriminative latent structure model, the gap between structured low level visual feature and high level semantic label can be bridged by a intermediate latent structured layer. It can lead to an integrated solution to all the three problems within a unique framework simultaneously. In this project, we make the systematic study in theory about the Dynamical Latent Structure Model (DLSM) for human motion analysis. And, the algorithms and the approaches to train the model and make inference are also our main research contents. The adaption of the proposed DLSM to simultaneous people segmentation, pose estimation and action recognition is of our central interest.To provide informative and compact structured visual information for DLSM, we propose to develop effective methods for detecting, representing, and matching of both global and local features. To the best of our knowledge, the proposed ideas of DLSM, which is specially designed to solve the three basic problems of human motion in dynamical image seque
英文关键词: Action recognition;Pose estimation;People detection;Person re-identification;latent structure