Large Language Model (LLM)-based recommendation systems provide more comprehensive recommendations than traditional systems by deeply analyzing content and user behavior. However, these systems often exhibit biases, favoring mainstream content while marginalizing non-traditional options due to skewed training data. This study investigates the intricate relationship between bias and LLM-based recommendation systems, with a focus on music, song, and book recommendations across diverse demographic and cultural groups. Through a comprehensive analysis conducted over different LLM-models, this paper evaluates the impact of bias on recommendation outcomes. Our findings highlight that biases are not only deeply embedded but also widely pervasive across these systems, emphasizing the substantial and widespread nature of the issue. Moreover, contextual information, such as socioeconomic status, further amplify these biases, demonstrating the complexity and depth of the challenges faced in creating fair recommendations across different groups.
翻译:暂无翻译