We study the performance power of software combining in designing persistent algorithms and data structures. We present Bcomb, a new blocking highly-efficient combining protocol, and built upon it to get PBcomb, a persistent version of it that performs a small number of persistence instructions and exhibits low synchronization cost. We built fundamental recoverable data structures, such as stacks and queues based on PBcomb, as well as on PWFcomb, a wait-free universal construction we present. Our experiments show that PBcomb and PWFcomb outperform by far state-of-the-art recoverable universal constructions and transactional memory systems, many of which ensure weaker consistency properties than our algorithms. We built recoverable queues and stacks, based on PBcomb and PWFcomb, and present experiments to show that they have much better performance than previous recoverable implementations of stacks and queues. We build the first recoverable implementation of a concurrent heap and present experiments to show that it has good performance when the size of the heap is not very large.


翻译:我们研究软件在设计持久性算法和数据结构时的性能。我们展示了Bcomb,这是一个新的阻塞高效的新型联合协议,并以此为基础开发了PBcomb,这是它的一个持久性版本,它运行了少量的持久性指令和低同步成本。我们建立了基本的可恢复数据结构,例如基于PBcomb的堆叠和排队,以及基于PWFcomb的PWFcomb,这是我们所展示的无等待的通用建筑。我们的实验显示,PBcomb和PWFcomb在远为最先进的可回收通用建筑和交易存储系统上优于性能,其中许多保证了比我们的算法更差的一致性性。我们根据PBcomb和PWFScomb建造了可恢复的队列和堆叠,并进行了实验,以表明它们比以前可回收的堆叠和排队的安装工作要好得多。我们所展示的首次可恢复的堆叠,并展示了可同时进行堆叠和演示,以显示在堆积规模不大的情况下,它的性能良好。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2021年11月3日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员