In this paper, we propose a new low-rank matrix factorization model dubbed bounded simplex-structured matrix factorization (BSSMF). Given an input matrix $X$ and a factorization rank $r$, BSSMF looks for a matrix $W$ with $r$ columns and a matrix $H$ with $r$ rows such that $X \approx WH$ where the entries in each column of $W$ are bounded, that is, they belong to given intervals, and the columns of $H$ belong to the probability simplex, that is, $H$ is column stochastic. BSSMF generalizes nonnegative matrix factorization (NMF), and simplex-structured matrix factorization (SSMF). BSSMF is particularly well suited when the entries of the input matrix $X$ belong to a given interval; for example when the rows of $X$ represent images, or $X$ is a rating matrix such as in the Netflix and MovieLens datasets where the entries of $X$ belong to the interval $[1,5]$. The simplex-structured matrix $H$ not only leads to an easily understandable decomposition providing a soft clustering of the columns of $X$, but implies that the entries of each column of $WH$ belong to the same intervals as the columns of $W$. In this paper, we first propose a fast algorithm for BSSMF, even in the presence of missing data in $X$. Then we provide identifiability conditions for BSSMF, that is, we provide conditions under which BSSMF admits a unique decomposition, up to trivial ambiguities. Finally, we illustrate the effectiveness of BSSMF on two applications: extraction of features in a set of images, and the matrix completion problem for recommender systems.
翻译:在本文中,我们提出了一种新的低秩矩阵分解模型,称为有界单纯形结构矩阵分解(BSSMF)。给定一个输入矩阵$X$和一个分解秩$r$,BSSMF寻找一个具有$r$列的矩阵$W$和一个具有$r$行的矩阵$H$,使得$X \approx WH$,其中$W$的每个列中的元素都被限定在给定区间内,而$H$的列属于概率单纯形,即$H$是列随机的。BSSMF推广了非负矩阵分解(NMF)和单纯形结构矩阵分解(SSMF)。当输入矩阵$X$的元素属于给定区间时,例如当$X$的行表示图像或者$X$是评价矩阵(例如Netflix和MovieLens数据集),其中$X$的元素属于区间$[1,5]$,BSSMF特别适用。单纯形结构矩阵$H$不仅提供了易于理解的分解结果,还提供了$WH$的每个列中的元素属于和$W$的列相同的区间的性质。在本文中,我们首先提出了BSSMF的快速算法,即使在$X$中存在缺失数据的情况下。然后,我们提供了BSSMF的可辨识性条件,即我们提供了在哪些条件下BSSMF支持唯一分解的条件,除了平凡的不确定性。最后,我们通过两个应用案例,即从一系列图像中提取特征和推荐系统中的矩阵完成问题,说明了BSSMF的有效性。