Virtual Private Network (VPN) solutions are used to connect private networks securely over the Internet. Besides their benefits in corporate environments, VPNs are also marketed to privacy-minded users to preserve their privacy, and to bypass geolocation-based content blocking and censorship. This has created a market for turnkey VPN services offering a multitude of vantage points all over the world for a monthly price. While VPN providers are heavily using privacy and security benefits in their marketing, such claims are generally hard to measure and substantiate. While there exist some studies on the VPN ecosystem, all prior works omit a critical part in their analyses: (i) How well do the providers configure and secure their own network infrastructure? and (ii) How well are they protecting their customers from other customers? To answer these questions, we have developed an automated measurement system with which we conduct a large-scale analysis of VPN providers and their thousands of VPN endpoints. Considering the fact that VPNs work internally using non-Internet-routable IP addresses, they might enable access to otherwise inaccessible networks. If not properly secured, this can inadvertently expose internal networks of these providers, or worse, even other clients connected to their services. Our results indicate a widespread lack of traffic filtering towards internally routable networks on the majority of tested VPN service providers, even in cases where no other VPN customers were directly exposed. We have disclosed our findings to the affected providers and other stakeholders, and offered guidance to improve the situation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

VPN(Virtual Private Network)虚拟专用网络,通过一个公用网络建立一条安全、稳定隧道。主要采用隧道技术、加解密技术、密钥管理技术和使用者与设备身份认证技术。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年12月3日
Arxiv
0+阅读 · 2024年11月27日
Arxiv
16+阅读 · 2019年4月4日
Arxiv
10+阅读 · 2018年2月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年12月3日
Arxiv
0+阅读 · 2024年11月27日
Arxiv
16+阅读 · 2019年4月4日
Arxiv
10+阅读 · 2018年2月17日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员