In this paper we present a finite element analysis for a Dirichlet boundary control problem governed by the Stokes equation. The Dirichlet control is considered in a convex closed subset of the energy space $\mathbf{H}^1(\Omega).$ Most of the previous works on the Stokes Dirichlet boundary control problem deals with either tangential control or the case where the flux of the control is zero. This choice of the control is very particular and their choice of the formulation leads to the control with limited regularity. To overcome this difficulty, we introduce the Stokes problem with outflow condition and the control acts on the Dirichlet boundary only hence our control is more general and it has both the tangential and normal components. We prove well-posedness and discuss on the regularity of the control problem. The first-order optimality condition for the control leads to a Signorini problem. We develop a two-level finite element discretization by using $\mathbf{P}_1$ elements(on the fine mesh) for the velocity and the control variable and $P_0$ elements (on the coarse mesh) for the pressure variable. The standard energy error analysis gives $\frac{1}{2}+\frac{\delta}{2}$ order of convergence when the control is in $\mathbf{H}^{\frac{3}{2}+\delta}(\Omega)$ space. Here we have improved it to $\frac{1}{2}+\delta,$ which is optimal. Also, when the control lies in less regular space we derived optimal order of convergence up to the regularity. The theoretical results are corroborated by a variety of numerical tests.
翻译:在本文中, 我们为受斯托克斯方程式管束的 Dirichlet 边界控制问题提出一个有限元素分析 { Stokes { 等式 { 。 为了克服这一困难, 我们引入了流出状态的斯托克斯问题控制, 以及迪里什 控制在迪里什 {H\\\1 (\ 欧米加) 能量空间空间的封闭子集 $\ mathb{ { 。 在斯托克斯 Dirichlet 边界控制问题中, 大部分以前的工作要么是外向控制, 要么是流出状态 { { { 校方 { { { 校方 { 3} 调出流状态和在狄里士莱特 边界的控制动作中, 调出一个封闭状态, 控制状态第一阶的最佳状态导致软质问题。 我们通过 $\\\\\ { { { { { { { \\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 在 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \