We present a neural network architecture able to efficiently detect modulation scheme in a portion of I/Q signals. This network is lighter by up to two orders of magnitude than other state-of-the-art architectures working on the same or similar tasks. Moreover, the number of parameters does not depend on the signal duration, which allows processing stream of data, and results in a signal-length invariant network. In addition, we have generated a dataset based on the simulation of impairments that the propagation channel and the demodulator can bring to recorded I/Q signals: random phase shifts, delays, roll-off, sampling rates, and frequency offsets. We benefit from this dataset to train our neural network to be invariant to impairments and quantify its accuracy at disentangling between modulations under realistic real-life conditions. Data and code to reproduce the results are made publicly available.


翻译:我们提出了一个神经网络结构,能够在I/Q信号的一部分中有效检测调制方案。这个网络比从事相同或类似任务的其他最先进的结构轻两个数量级。此外,参数的数量并不取决于信号持续时间,因为信号允许处理数据流,结果形成一个信号长的变异网络。此外,我们还根据传播频道和降压器可以带入记录I/Q信号的缺陷模拟生成了一个数据集:随机阶段转移、延迟、滚动、抽样率和频率抵消。我们从这个数据集中受益,以训练我们的神经网络不易受损,并在现实现实生活条件下的调制之间脱钩时量化其准确性。复制结果的数据和代码可以公开提供。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
61+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
6+阅读 · 2018年7月9日
Arxiv
4+阅读 · 2018年6月14日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员