There is an emerging interest for tensor factorization applications in big-data analytics and machine learning. To speed up the factorization of extra-large datasets, organized in multidimensional arrays (aka tensors), easy to compute compression-based tensor representations, such as, Tucker and Tensor Train formats, are used to approximate the initial large-tensor. Further, tensor factorization is used to extract latent features that can facilitate discoveries of new mechanisms and signatures hidden in the data, where the explainability of the latent features is of principal importance. Nonnegative tensor factorization extracts latent features that are naturally sparse and parts of the data, which makes them easily interpretable. However, to take into account available domain knowledge and subject matter expertise, often additional constraints need to be imposed, which lead us to Canonical decomposition with linear constraints (CANDELINC), a Canonical Polyadic Decomposition with rank deficient factors. In CANDELINC, Tucker compression is used as a pre-processing step, which lead to a larger residual error but to more explainable latent features. Here, we propose a nonnegative CANDELINC (nnCANDELINC) accomplished via a specific nonnegative Tucker decomposition; we refer to as minimal or canonical nonnegative Tucker. We derive several results required to understand the specificity of nnCANDELINC, focusing on the difficulties of preserving the nonnegative rank of a tensor to its Tucker core and comparing the real valued to nonnegative case. Finally, we demonstrate nnCANDELINC performance on synthetic and real-world examples.


翻译:在大数据分析和机器学习中,正在出现对推力因子应用的兴趣,在大数据分析学和机器学习中,正在出现对推力因子应用的兴趣。为了加快以多功能阵列(aka Exctors)组织起来的超大数据集的因子化,因此很容易计算基于压缩的感应器(如塔克和Tensor Train 列车格式)来接近最初的大电压器。此外,推力因因子化被用来提取潜在特征,便于发现数据中隐藏的新机制和信号,而潜伏特征的可解释性能非常重要。为了加快超大型数据集的因子化因子化,以自然稀释和数据的某些部分为主,使得这些数据易于解释。然而,为了考虑到现有的域内知识和主题的专门知识,例如塔克和Tensorg Train等,往往需要施加额外的限制,从而导致Canonical分解与线性制约(CANLINC),一种与等级缺陷因素相联的隐性分解。在CANLINC的预处理步骤中,这导致更大的残余错误,但更难于可解释的隐性不易的特性特征。我们建议通过非CANCANCAN-deal-deal-deal-deal-dealate-deal-deal-decol-col-deal-deal-deal-col-deal-col-col-deal-deal-cal-calg-incol-incalg-incal-incal-incal-incalg-incal-le-incal-deal-deal-incal-deal-incal-deal-incal-incal-incal-deal-incal-deal-deal-deal-inal-incal-de-inal-deal-incal-incal-deal-deal-deal-inal-deal-deal-incal-incal-deal-le-le-deal-inal-inal-inal-incal-incal-incal-incal-inal-incal-incal-incal-

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
ResT V2: Simpler, Faster and Stronger
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员