An irreducible stochastic matrix with rational entries has a stationary distribution given by a vector of rational numbers. We give an upper bound on the lowest common denominator of the entries of this vector. Bounds of this kind are used to study the complexity of algorithms for solving stochastic mean payoff games. They are usually derived using the Hadamard inequality, but this leads to suboptimal results. We replace the Hadamard inequality with the Markov chain tree formula in order to obtain optimal bounds. We also adapt our approach to obtain bounds on the absorption probabilities of finite Markov chains and on the gains and bias vectors of Markov chains with rewards.
翻译:具有合理条目的不可减少的随机矩阵和合理条目具有由理性数字矢量提供的固定分布。 我们给此矢量条目最小公分母上一个上限。 使用这种界子来研究解决随机中值报酬游戏的算法复杂性。 它们通常使用哈达马德的不平等来产生, 但结果不尽理想。 我们用马可夫链条树公式来取代哈达马德的不平等, 以获得最佳界限 。 我们还调整我们的方法, 以获得限定的马尔科夫链的吸收概率以及马尔科夫链条的收益和偏向矢量的界限 。