In more and more applications, a quantity of interest may depend on several covariates, with at least one of them infinite-dimensional (e.g. a curve). To select the relevant covariates in this context, we propose an adaptation of the Lasso method. Two estimation methods are defined. The first one consists in the minimisation of a criterion inspired by classical Lasso inference under group sparsity (Yuan and Lin, 2006; Lounici et al., 2011) on the whole multivariate functional space H. The second one minimises the same criterion but on a finite-dimensional subspace of H which dimension is chosen by a penalized leasts-squares method base on the work of Barron et al. (1999). Sparsity-oracle inequalities are proven in case of fixed or random design in our infinite-dimensional context. To calculate the solutions of both criteria, we propose a coordinate-wise descent algorithm, inspired by the glmnet algorithm (Friedman et al., 2007). A numerical study on simulated and experimental datasets illustrates the behavior of the estimators.


翻译:在越来越多的应用中,一定的利息可能取决于多个共变空间,其中至少有一个是无限的(如曲线)。为选择这方面的相关共变变量,我们建议对Lasso方法进行修改。确定了两种估算方法。第一个方法是在群体宽度下对由古典激光测算所启发的标准进行最小化(Yuan和Lin,2006年;Lounici等人,2011年),整个多变功能空间H。第二个是将同一标准最小化,但H的有限维次空间,其维度由Barron等人工作(1999年)的受惩罚的最小方位方法基础所选择。在我们无限维度范围内的固定或随机设计中,可证明种族不平等。为了计算这两种标准的解决办法,我们提议在 glmnet 算法(Friedman等人,2007年)的启发下,采用协调、明智的血统算法(Friedman等人,2007年),关于模拟和实验性数据集的数字研究说明了测量者的行为。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
商业数据分析,39页ppt
专知会员服务
157+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
0+阅读 · 2021年10月27日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员