This work focuses on the synergy of rate-splitting multiple access (RSMA) and beyond diagonal reconfigurable intelligent surface (BD-RIS) to enlarge the coverage, improve the performance, and save on antennas. Specifically, we employ a multi-sector BD-RIS modeled as a prism, which can achieve highly directional full-space coverage, in a multiuser multiple input single output communication system. With the multi-sector BD-RIS aided RSMA model, we jointly design the transmit precoder and BD-RIS matrix under the imperfect channel state information (CSI) conditions. The robust design is performed by solving a stochastic average sum-rate maximization problem. With sample average approximation and weighted minimum mean square error-rate relationship, the stochastic problem is transformed into a deterministic one with multiple blocks, each of which is iteratively designed. Simulation results show that multi-sector BD-RIS aided RSMA outperforms space division multiple access schemes. More importantly, synergizing multi-sector BD-RIS with RSMA is an efficient strategy to reduce the number of active antennas at the transmitter and the number of passive antennas in BD-RIS.


翻译:这项工作侧重于分速多存取(RSMA)的协同作用,以及超越分速分解多存取(RSMA)和可对数重新配置智能表面(BD-RIS)的协同作用,以扩大覆盖范围、改进性能和节省天线。具体地说,我们采用多部门BD-RIS模型模型模型,作为棱镜模型,可以实现高度定向全空间覆盖,在多用户多输入输入单一产出通信系统中,实现高度定向全空间覆盖。我们利用多部门BD-RIS辅助RSMA模型,在不完善的频道国家信息条件下,共同设计传输预存码和BD-RIS矩阵。强有力的设计是通过解决随机平均和平均总率最大化问题来完成的。通过样本平均近似和加权最小平均平方差率关系,Stochaticistic问题被转化成一个具有多块的确定性的全空覆盖。模拟结果显示,多部门BD-RIS援助RSMA系统超越了空间分区的多存取计划。更重要的是,将多部门BD-RIS与RS与RSMA系统同步连接成一个有效的战略,以减少发盘和BMA的被动天线的数目。</s>

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月3日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员