Shortcut learning occurs when a deep neural network overly relies on spurious correlations in the training dataset in order to solve downstream tasks. Prior works have shown how this impairs the compositional generalization capability of deep learning models. To address this problem, we propose a novel approach to mitigate shortcut learning in uncontrolled target domains. Our approach extends the training set with an additional dataset (the source domain), which is specifically designed to facilitate learning independent representations of basic visual factors. We benchmark our idea on synthetic target domains where we explicitly control shortcut opportunities as well as real-world target domains. Furthermore, we analyze the effect of different specifications of the source domain and the network architecture on compositional generalization. Our main finding is that leveraging data from a source domain is an effective way to mitigate shortcut learning. By promoting independence across different factors of variation in the learned representations, networks can learn to consider only predictive factors and ignore potential shortcut factors during inference.
翻译:当深神经网络过分依赖培训数据集的虚假关联来完成下游任务时,就会出现捷径学习。 先前的工作表明,这如何损害深层学习模式的构成通用能力。 为了解决这一问题,我们建议采取新颖办法,在不受控制的目标领域减少捷径学习。 我们的方法是将培训数据集扩大为额外数据集(源域),专门设计该数据集是为了便利学习对基本视觉因素的独立表现。 我们把我们的理念以合成目标领域为基准,我们明确控制捷径机会和实际世界目标领域。 此外,我们分析了源域和网络结构的不同规格对构成通用的影响。我们的主要发现是,从源域利用数据是减少捷径学习的有效途径。通过促进在学习表现形式中不同差异因素的独立性,网络可以学会只考虑预测因素,在推断过程中忽略可能的捷径因素。