The field of continual deep learning is an emerging field and a lot of progress has been made. However, concurrently most of the approaches are only tested on the task of image classification, which is not relevant in the field of intelligent vehicles. Only recently approaches for class-incremental semantic segmentation were proposed. However, all of those approaches are based on some form of knowledge distillation. At the moment there are no investigations on replay-based approaches that are commonly used for object recognition in a continual setting. At the same time while unsupervised domain adaption for semantic segmentation gained a lot of traction, investigations regarding domain-incremental learning in an continual setting is not well-studied. Therefore, the goal of our work is to evaluate and adapt established solutions for continual object recognition to the task of semantic segmentation and to provide baseline methods and evaluation protocols for the task of continual semantic segmentation. We firstly introduce evaluation protocols for the class- and domain-incremental segmentation and analyze selected approaches. We show that the nature of the task of semantic segmentation changes which methods are most effective in mitigating forgetting compared to image classification. Especially, in class-incremental learning knowledge distillation proves to be a vital tool, whereas in domain-incremental learning replay methods are the most effective method.


翻译:持续深层次学习的领域是一个新兴领域,已经取得了许多进展。然而,大多数方法只是对图像分类任务进行测试,而这与智能载体领域无关。只是最近才提出了等级强化语义分割法。然而,所有这些方法都基于某种形式的知识蒸馏法。目前还没有对经常在连续环境中用于目标识别的重播法方法进行调查。与此同时,对语义分割的不受监督的域适应方法获得了很多牵引力,对持续环境中域内学习的调查没有很好地研究。因此,我们工作的目标是评估和调整既定的解决方案,以持续对象识别语义分割任务,并为持续语义分割任务提供基线方法和评价协议。我们首先为等级和域内分化引入评价程序,并分析选定的方法。我们表明,在持续环境下,对域内分化的改变任务的性质,最有效的方法是学习,在改变领域内学习方法,在改变方向上,在改变方向上,学习最有效的方法,在改变领域内学习,在改变方向上,学习方法,在改变方向上,学习最有效的方法,在改变方向上,在改变方向上,学习,在改变方向上,在改变方向上,学习方法,在学习,在改变方向上,学习,在改变方向上,在改变方向上,在改变方向上,在学习,在改变方向上,在学习方法上,在改变方向上,逐渐,在改变,在改变方向上,在改变。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
29+阅读 · 2022年3月28日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员