We propose a novel in-order chart-based model for constituent parsing. Compared with previous CKY-style and top-down models, our model gains advantages from in-order traversal of a tree (rich features, lookahead information and high efficiency) and makes a better use of structural knowledge by encoding the history of decisions. Experiments on the Penn Treebank show that our model outperforms previous chart-based models and achieves competitive performance compared with other discriminative single models.
翻译:我们提出了一个新的基于顺序图的剖析模式。 与以前的CKY式和自上而下的模式相比,我们的模型从一棵树的顺序穿行(丰富特征、外观信息和高效效率)中获益,并通过将决策史编码来更好地利用结构知识。 在Penn Treebank的实验表明,我们的模型优于以往的基于图表的模式,并与其他具有歧视性的单一模式相比取得了竞争力的业绩。