Semi-supervised medical image segmentation has attracted much attention in recent years because of the high cost of medical image annotations. In this paper, we propose a novel Inherent Consistent Learning (ICL) method, aims to learn robust semantic category representations through the semantic consistency guidance of labeled and unlabeled data to help segmentation. In practice, we introduce two external modules, namely Supervised Semantic Proxy Adaptor (SSPA) and Unsupervised Semantic Consistent Learner (USCL) that is based on the attention mechanism to align the semantic category representations of labeled and unlabeled data, as well as update the global semantic representations over the entire training set. The proposed ICL is a plug-and-play scheme for various network architectures, and the two modules are not involved in the testing stage. Experimental results on three public benchmarks show that the proposed method can outperform the state-of-the-art, especially when the number of annotated data is extremely limited. Code is available at: https://github.com/zhuye98/ICL.git.
翻译:面向准确半监督医学图像分割的固有一致学习
翻译后的摘要
半监督的医学图像分割因医学图像注释成本高昂而备受关注。本文提出了一种新颖的固有一致学习(ICL)方法,旨在通过有标注和无标注数据的语义一致性指导学习强大的语义类别表示,从而帮助图像分割。在实践中,我们引入了两个外部模块,即监督语义代理适配器(SSPA)和基于注意力机制的无监督语义一致学习器(USCL),以对齐标注和无标注数据的语义类别表示,并在整个训练集上更新全局语义表示。所提出的ICL是各种网络架构的即插即用方案,两个模块不涉及测试阶段。在三个公共基准测试中的实验结果表明,所提出的方法在注释数据极为有限时可以超越最先进技术。代码可在 https://github.com/zhuye98/ICL.git 中获取。