The main theorem in Judge and Mittelhammer [Judge, G. G., and Mittelhammer, R. (2004), A Semiparametric Basis for Combining Estimation Problems under Quadratic Loss; JASA, 99, 466, 479--487] stipulates that, in the context of nonzero correlation, a sufficient condition for the Stein rule (SR)-type estimator to dominate the base estimator is that the dimension $k$ should be at least 5. Thanks to some refined inequalities, this dominance result is proved in its full generality; for a class of estimators which includes the SR estimator as a special case. Namely, we prove that, for any member of the derived class, $k\geqslant 3$ is a sufficient condition regardless of the correlation factor. We also relax the Gaussian condition of the distribution of the base estimator, as we consider the family of elliptically contoured variates. Finally, we waive the condition on the invertibility of the variance-covariance matrix of the base and the competing estimators. Our theoretical findings are corroborated by some simulation studies, and the proposed method is applied to the Cigarette dataset.


翻译:法官和Mittelhammer案[Judge, G. G. 和Mittelhammer案, R. (2004年),《将估计问题综合起来的半参数基础》, JSA, 99, 466, 479-487-4877)的主要理论认为,在非零相关性的情况下, Stein 规则(SR) 类型估算器控制基本估计器的足够条件是,其尺寸至少应该为5美元。 由于一些改进的不平等,这一支配地位的结果证明是完全笼统的;对于包括SR估计器作为特例的一类估算器在内的估算器来说,我们证明,对于衍生的类别的任何成员来说,3美元是充分的条件,而不论相关性因素如何。 我们还放宽了基础估计器分布的标语条件,因为我们认为天文轮式变异系是精细的,最后,我们放弃某些差异相联性估算器的不可逆性条件,我们提出的模拟模型是基础和相互竞争的数据模型。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年10月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员