We examine the dimensions of various inf-sup stable mixed finite element spaces on tetrahedral meshes in 3D with exact divergence constraints. More precisely, we compare the standard Scott-Vogelius elements of higher polynomial degree and low order methods on split meshes, the Alfeld and the Worsey-Farin split. The main tool is a counting strategy to express the degrees of freedom for given polynomial degree and given split in terms of few mesh quantities, for which bounds and asymptotic behavior under mesh refinement is investigated. Furthermore, this is used to obtain insights on potential precursor spaces in full de Rham complexes for finite element methods on the Worsey-Farin split.
翻译:我们检查了三维四肢间歇物中各种硬质稳定混合元素空间的维度,并有精确的差异限制。更准确地说,我们比较了高多元度的Scott-Vogelius标准元素,以及分裂梅舍、Alfeld和Wirkery-Farin的低排序方法。主要工具是计算战略,以表达给定多元度的自由度,并按少量网状数量进行分割,为此,正在调查网状改进中的界限和无药性行为。此外,还利用这一方法深入了解整个Rham复合物中潜在的先质空间,了解关于Wartery-Farin的有限元素方法。