The 4D-Var method for filtering partially observed nonlinear chaotic dynamical systems consists of finding the maximum a-posteriori (MAP) estimator of the initial condition of the system given observations over a time window, and propagating it forward to the current time via the model dynamics. This method forms the basis of most currently operational weather forecasting systems. In practice the optimization becomes infeasible if the time window is too long due to the non-convexity of the cost function, the effect of model errors, and the limited precision of the ODE solvers. Hence the window has to be kept sufficiently short, and the observations in the previous windows can be taken into account via a Gaussian background (prior) distribution. The choice of the background covariance matrix is an important question that has received much attention in the literature. In this paper, we define the background covariances in a principled manner, based on observations in the previous $b$ assimilation windows, for a parameter $b\ge 1$. The method is at most $b$ times more computationally expensive than using fixed background covariances, requires little tuning, and greatly improves the accuracy of 4D-Var. As a concrete example, we focus on the shallow-water equations. The proposed method is compared against state-of-the-art approaches in data assimilation and is shown to perform favourably on simulated data. We also illustrate our approach on data from the recent tsunami of 2011 in Fukushima, Japan.


翻译:4D- Var 过滤部分观测到的非线性混乱动态系统的4D-Var 方法包括找到一个时间窗口观测到的系统初始状态的最大估计值(MAP), 并通过模型动态向当前时间传播。 此方法构成了大多数目前运行的天气预报系统的基础。 实际上, 如果时间窗口由于成本功能不协调、模型错误的影响和 ODE 解答器的精度有限而太长, 则优化将变得不可行。 因此, 窗口必须保持足够短的时间, 并且可以通过高斯背景( 原始) 分布来考虑前一个窗口的观察。 选择背景变异矩阵是文献中非常关注的一个重要问题。 在本文中, 我们根据先前的 $b美元同化窗口的观测结果, 模型错误和 ODE 解析器的精确度 。 相对于固定背景背景共变率, 之前窗口的观察结果的计算成本最高为$b倍, 之前窗口的观察结果可以被考虑。 与最近所显示的日本相比, 我们的直流数据的精确度相比, 我们的精确度, 的直方平方平方平方法需要大大地调整。

0
下载
关闭预览

相关内容

Microsoft Windows(视窗操作系统)是微软公司推出的一系列操作系统。它问世于1985年,当时是DOS之下的操作环境,而后其后续版本作逐渐发展成为个人电脑和服务器用户设计的操作系统。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月10日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
4+阅读 · 2017年11月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员