Top-down instance segmentation framework has shown its superiority in object detection compared to the bottom-up framework. While it is efficient in addressing over-segmentation, top-down instance segmentation suffers from over-crop problem. However, a complete segmentation mask is crucial for biological image analysis as it delivers important morphological properties such as shapes and volumes. In this paper, we propose a region proposal rectification (RPR) module to address this challenging incomplete segmentation problem. In particular, we offer a progressive ROIAlign module to introduce neighbor information into a series of ROIs gradually. The ROI features are fed into an attentive feed-forward network (FFN) for proposal box regression. With additional neighbor information, the proposed RPR module shows significant improvement in correction of region proposal locations and thereby exhibits favorable instance segmentation performances on three biological image datasets compared to state-of-the-art baseline methods. Experimental results demonstrate that the proposed RPR module is effective in both anchor-based and anchor-free top-down instance segmentation approaches, suggesting the proposed method can be applied to general top-down instance segmentation of biological images.
翻译:与自下而上分解框架相比,自下而下分解框架在物体检测方面表现出其优越性,尽管它能有效处理过分分解问题,但自下而下分解则存在过度裁剪问题。然而,完整的分解面面面面面面面面面面面面面对生物图像分析至关重要,因为它提供了重要的形态特性,如形状和数量等。在本文件中,我们提出了一个区域建议校正模块,以解决这一具有挑战性的不完全分解问题。特别是,我们提供了一个渐进式的ROIlign模块,以逐步将邻居信息引入一系列ROI。ROI特征被注入一个专注的反馈前向网络(FFN)用于建议框回归。如果有其他的邻居信息,拟议的RPR模块将显示区域提案位置的校正显著改进,从而展示了三个生物图像数据集与最先进的基线方法相比的有利分解性。实验结果显示,拟议的RPR模块在锚基和无锚自上而下向下至下分解的方法中都是有效的,建议的方法可以应用于生物图象的一般自上向下分解。