We introduce ShortcutGen, a new data poisoning attack that generates sample-dependent, error-minimizing perturbations by learning a generator. The key novelty of ShortcutGen is the use of a randomly-initialized discriminator, which provides spurious shortcuts needed for generating poisons. Different from recent, iterative methods, our ShortcutGen can generate perturbations with only one forward pass in a label-free manner, and compared to the only existing generative method, DeepConfuse, our ShortcutGen is faster and simpler to train while remaining competitive. We also demonstrate that integrating a simple augmentation strategy can further boost the robustness of ShortcutGen against early stopping, and combining augmentation and non-augmentation leads to new state-of-the-art results in terms of final validation accuracy, especially in the challenging, transfer scenario. Lastly, we speculate, through uncovering its working mechanism, that learning a more general representation space could allow ShortcutGen to work for unseen data.
翻译:我们引入了捷径Gen, 这是一种新的数据中毒袭击, 通过学习一个生成器, 产生基于样本的、 最小错误的扰动。 捷径Gen的关键新颖之处是使用随机初始歧视器, 它提供了产生毒药所需的虚假捷径。 与最近的迭代方法不同, 我们的捷径Gen 能够以一种无标签的方式, 与唯一的现有基因化方法DeepConfuse 相比, 仅用一个前方通道产生扰动, 我们的捷径Gen 在保持竞争力的同时, 培训速度更快、更简单。 我们还表明, 整合简单的增强战略可以进一步增强捷径Gen 的稳健性, 防止早期停止, 并且将增强和非增强结合起来导致最终验证准确性方面的最新结果, 特别是在具有挑战性的转移情景中。 最后, 我们通过发现它的工作机制, 我们推测, 学习一个更通用的展示空间可以让 SwordGen 用于为看不见的数据工作。