The Factorial Basis method, initially designed for quasi-triangular, shift-compatible factorial bases, provides solutions to linear recurrence equations in the form of definite-sums. This paper extends the Factorial Basis method to its q-analog, enabling its application in q-calculus. We demonstrate the adaptation of the method to q-sequences and its utility in the realm of q-combinatorics. The extended technique is employed to automatically prove established identities and unveil novel ones, particularly some associated with the Rogers-Ramanujan identities.
翻译:暂无翻译