Optimizing energy consumption for robot navigation in fields requires energy-cost maps. However, obtaining such a map is still challenging, especially for large, uneven terrains. Physics-based energy models work for uniform, flat surfaces but do not generalize well to these terrains. Furthermore, slopes make the energy consumption at every location directional and add to the complexity of data collection and energy prediction. In this paper, we address these challenges in a data-driven manner. We consider a function which takes terrain geometry and robot motion direction as input and outputs expected energy consumption. The function is represented as a ResNet-based neural network whose parameters are learned from field-collected data. The prediction accuracy of our method is within 12% of the ground truth in our test environments that are unseen during training. We compare our method to a baseline method in the literature: a method using a basic physics-based model. We demonstrate that our method significantly outperforms it by more than 10% measured by the prediction error. More importantly, our method generalizes better when applied to test data from new environments with various slope angles and navigation directions.
翻译:优化机械人田间导航的能源消耗需要能源成本地图。 然而,获取这样的地图仍具有挑战性, 特别是对于大而不均的地形而言。 基于物理的能源模型对制服、 平坦的表面有效, 但不能与这些地形相容。 此外, 斜坡使每个地点的能源消耗方向都具有方向性, 并增加了数据收集和能源预测的复杂性。 在本文中, 我们以数据驱动的方式应对这些挑战。 我们认为, 以地形几何和机器人运动方向作为输入和输出预期能源消耗的功能。 功能代表着以ResNet为基础的神经网络, 其参数来自实地收集的数据。 我们方法的预测精确度在培训期间看不见的测试环境中的地面真情的12%之内。 我们比较了我们的方法与文献中的基线方法: 一种使用基本物理模型的方法。 我们证明, 我们的方法大大超出由预测错误测量的10%以上。 更重要的是, 我们的方法在应用以不同斜角和导航方向测试新环境的数据时, 更加概括。