A large amount of quantitative geospatial data are collected and aggregated in discrete enumeration units (e.g. countries or states). Smooth pycnophylactic interpolation aims to find a smooth, nonnegative function such that the area integral over each enumeration unit is equal to the aggregated data. Conventionally, smooth pycnophylactic interpolation is achieved by a cellular automaton algorithm that converts a piecewise constant function into an approximately smooth function defined on a grid of coordinates on an equal-area map. An alternative approach, proposed by Tobler in 1976, is to construct a density-equalising map projection in which areas of enumeration units are proportional to the aggregated data. A pycnophylactic interpolation can be obtained from the Jacobian of this projection. Here, we describe a software implementation of this method. Although solutions are not necessarily optimal in terms of predefined quantitative measures of smoothness, our method is computationally efficient and can potentially be used in tandem with other methods to accelerate convergence towards an optimal solution.
翻译:大量定量地理空间数据被收集起来,在离散的查点单位(例如国家或州)中进行汇总; 平滑的测相干涉旨在找到一种平滑的、非负的功能,使每个查点单位所固有的区域与汇总数据相等。 从《公约》角度讲,通过细胞自动测算算算法,将片断恒定函数转换成在平地地图坐标网中界定的大致平稳的功能,实现了光滑的测相。 1976年托布勒提出的另一种办法,是建立一个密度均衡的地图投影,使查点单位的面积与汇总数据成正比。可以从Jacobian获得一个测算法的测相。在这里,我们描述这一方法的软件实施情况。虽然从预先定义的测算光度测量方法来看,我们的方法不一定是最佳的,但是在计算上是有效的,并且有可能与其他方法一起使用,以加速趋同的最佳解决办法。