Electrocardiogram(ECG) is commonly used to detect cardiac irregularities such as atrial fibrillation, bradycardia, and other irregular complexes. While previous studies have achieved great accomplishment classifying these irregularities with standard 12-lead ECGs, there existed limited evidence demonstrating the utility of reduced-lead ECGs in capturing a wide-range of diagnostic information. In addition, classification model's generalizability across multiple recording sources also remained uncovered. As part of the PhysioNet Computing in Cardiology Challenge 2021, our team HaoWan AIeC, proposed Mixed-Domain Self-Attention Resnet (MDARsn) to identify cardiac abnormalities from reduced-lead ECG. Our classifiers received scores of 0.602, 0.593, 0.597, 0.591, and 0.589 (ranked 54th, 37th, 38th, 38th, and 39th) for the 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead versions of the hidden validation set with the evaluation metric defined by the challenge.
翻译:电动心电图(ECG)通常用于检测心脏不正常现象,如心肌梗塞、心肌梗塞和其他异常综合体,虽然以往的研究已经取得了重大成就,将这些不正常现象与标准的12个牵头ECG进行了分类,但有有限的证据表明,低级牵头ECG在获取广泛的诊断信息方面有用,此外,还发现了多种记录来源的分类模型的通用性,作为心血管挑战2021年的物理网络计算机的一部分,我们的HaoWan AyeC团队,拟议的混合自控自控Resnet(MDARsn),目的是查明低级牵头ECG的心脏异常情况。我们的分类者获得的分数为0.602、0.593、0.597、0.591和0.589(排名第54、37、38、38和39次),用于根据挑战界定的评价指标的12个铅、6个铅、4个铅、3个铅、2个铅和2个铅的隐藏鉴定组版本。