项目名称: 空间光学望远镜在轨振动预测与非接触主动隔振技术研究

项目编号: No.11302222

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 徐振邦

作者单位: 中国科学院长春光学精密机械与物理研究所

项目金额: 30万元

中文摘要: 空间平台振动是大型空间光学望远镜研制工作中所面临的重大技术挑战,为保证望远镜性能,需要对振动造成的影响进行预测。由于望远镜的技术复杂度高,涉及学科范围广,因此开展振动预测需要进行光学、结构、控制集成仿真分析。本项目提出了一种新型振动集成分析方案,该方案在结构模型中实现集成,具有求解效率高、传递数据量小以及高频精度高等优点。 当振动对望远镜性能影响较大时,要采取振动控制技术。本研究提出了一种适用于空间望远镜的非接触式主动隔振技术,该技术结合空间望远镜的光学特性设计,其作用机理相当于低频刚度无限大、高频刚度接近零的理想非线性隔振器。该技术具有减振效果好、对硬件要求低等优点,应用前景较好。

中文关键词: 空间望远镜;集成仿真;主动控制;非接触;

英文摘要: The vibration from the space equipment platform is a significant challenge for the development of the large space telescope. For ensuring the image quality,the simulation for the influence caused by the vibration should be carried out.The space telescope is very complex and the multidisciplinary knowledges would be involved. A novel integated simulation methode is presented in this report, which realizes integration in the mechnical model.This method has the advantages of high efficiency and high accurary. When the performance of the space camera is impacted significantly by the jitter from the platform, the vibration control technology needs to be applied. In this reportm a non-contact active vibration isolation technique is presented.The technique is designed combined with the optical characteristics of the space telescope, and it can be seen as the non-linear vibration isolator whose stiffness is infinite in the low frequency band and is zero in the high frequency band.The technology has the advantages of benefical effect,low demand for hardware and so on, therefore it is very fit to be applied in fact.

英文关键词: space telescope;integrated simulation;active control;non-contact;

成为VIP会员查看完整内容
0

相关内容

6G物理层AI关键技术白皮书(2022)
专知会员服务
42+阅读 · 2022年3月21日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
133+阅读 · 2021年2月17日
专知会员服务
42+阅读 · 2021年2月8日
自动化学科面临的挑战
专知会员服务
37+阅读 · 2020年12月19日
专知会员服务
51+阅读 · 2020年12月19日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
自动驾驶技术解读——自动驾驶汽车决策控制系统
智能交通技术
30+阅读 · 2019年7月7日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
李克强:智能车辆运动控制研究综述
厚势
21+阅读 · 2017年10月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
16+阅读 · 2020年5月20日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
11+阅读 · 2018年7月31日
小贴士
相关VIP内容
6G物理层AI关键技术白皮书(2022)
专知会员服务
42+阅读 · 2022年3月21日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
133+阅读 · 2021年2月17日
专知会员服务
42+阅读 · 2021年2月8日
自动化学科面临的挑战
专知会员服务
37+阅读 · 2020年12月19日
专知会员服务
51+阅读 · 2020年12月19日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月14日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
16+阅读 · 2020年5月20日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
11+阅读 · 2018年7月31日
微信扫码咨询专知VIP会员