Instrumental variable methods are among the most commonly used causal inference approaches to account for unmeasured confounders in observational studies. The presence of invalid instruments is a significant concern for practical applications, and a fast-growing area of research is inference for the causal effect with possibly invalid instruments. The existing inference methods rely on correctly separating valid and invalid instruments in a data-dependent way. This paper illustrates that the existing confidence intervals may substantially undercover due to the post-selection problem. To address this, we construct uniformly valid confidence intervals for the causal effect, robust to the mistakes in separating valid and invalid instruments. Our proposal is to search for a range of effect values that lead to sufficiently many valid instruments. We further devise a novel sampling method, which, together with searching, leads to a more precise confidence interval. Our proposed searching and sampling confidence intervals are uniformly valid and achieve the parametric length under the finite-sample majority and plurality rules. We compare our proposed methods with existing inference methods over a large set of simulation studies and apply them to study the effect of education on earnings.
翻译:仪器变量方法是最常用的因果推断方法,用于说明观察研究中未计量的混乱者; 无效仪器的存在是实际应用的重大关切,而迅速增加的研究领域是因果推断,可能无效的仪器可能也是无效的仪器; 现有的推断方法依靠以基于数据的方式正确区分有效和无效的仪器; 本文表明,由于选举后问题,现有信任间隔可能在很大程度上处于地下。 为了解决这一问题,我们为因果关系制定了统一有效的信任间隔,对分离有效和无效仪器的错误非常有力。 我们的提议是寻找一系列产生足够多有效仪器的效果值。 我们进一步设计新的抽样方法,与搜索一道,导致更精确的信任间隔。 我们提议的搜索和抽样信任间隔是统一的,在有限抽样多数和多元规则下达到参数长度。 我们比较了我们所提议的方法与大量模拟研究的现有推断方法,并运用这些方法来研究教育对收入的影响。