We consider constraint satisfaction problems whose relations are defined in first-order logic over any uniform hypergraph satisfying certain weak abstract structural conditions. Our main result is a P/NP-complete complexity dichotomy for such CSPs. Surprisingly, the large class of structures under consideration falls into a mixed regime where neither the classical complexity reduction to finite-domain CSPs can be used as a black box, nor does the class exhibit order properties, known to prevent the application of this reduction. We introduce an algorithmic technique inspired by classical notions from the theory of finite-domain CSPs, and prove its correctness based on symmetries that depend on a linear order that is external to the structures under consideration.
翻译:我们考虑的是制约满足问题,其关系在一阶逻辑中界定,而不是任何满足某些薄弱的抽象结构条件的统一高时的逻辑。 我们的主要结果就是对此类CSP实行P/NP完全的复杂二分法。 令人惊讶的是,审议中的一大批结构都属于混合制度,在这个制度中,对有限域CSP的典型复杂性的减少既不能用作黑盒,也不能用作已知防止应用这一削减的类别展品定购属性。 我们引入了一种基于有限域CSP理论的经典概念所启发的算法技术,并证明它基于依赖所审议结构外部线性秩序的对称性。