The international neuroscience community is building the first comprehensive atlases of brain cell types to understand how the brain functions from a higher resolution, and more integrated perspective than ever before. In order to build these atlases, subsets of neurons (e.g. serotonergic neurons, prefrontal cortical neurons etc.) are traced in individual brain samples by placing points along dendrites and axons. Then, the traces are mapped to common coordinate systems by transforming the positions of their points, which neglects how the transformation bends the line segments in between. In this work, we apply the theory of jets to describe how to preserve derivatives of neuron traces up to any order. We provide a framework to compute possible error introduced by standard mapping methods, which involves the Jacobian of the mapping transformation. We show how our first order method improves mapping accuracy in both simulated and real neuron traces, though zeroth order mapping is generally adequate in our real data setting. Our method is freely available in our open-source Python package brainlit.
翻译:国际神经科学界正在构建第一个全面的脑细胞类型图谱,以更高的分辨率和更综合的视角来了解大脑的功能。为了构建这些图谱,需要在单个脑样本中跟踪一些特定类型的神经元(如5-羟色胺能神经元、前额皮质神经元等),通过在树突和轴突上放置点来完成跟踪。然后,将这些跟踪映射到公共坐标系中,通过转换其点的位置完成,这忽略了转换过程中连接线段曲线的变化。在本研究中,我们应用了Jet理论,描述了如何保留神经元轨迹的导数信息直至任意阶。我们提供了一个计算标准映射方法引入的可能误差的框架,其中包括映射转换的Jacobian矩阵。我们展示了我们的一阶方法如何在模拟和真实神经元轨迹中提高映射精度,尽管在我们的实际数据设置中,零阶映射通常已足够。我们的方法可以在我们的开源Python包brainlit中免费使用。