A key challenge in social network analysis is understanding the position, or stance, of people in the graph on a large set of topics. While past work has modeled (dis)agreement in social networks using signed graphs, these approaches have not modeled agreement patterns across a range of correlated topics. For instance, disagreement on one topic may make disagreement(or agreement) more likely for related topics. We propose the Stance Embeddings Model(SEM), which jointly learns embeddings for each user and topic in signed social graphs with distinct edge types for each topic. By jointly learning user and topic embeddings, SEM is able to perform cold-start topic stance detection, predicting the stance of a user on topics for which we have not observed their engagement. We demonstrate the effectiveness of SEM using two large-scale Twitter signed graph datasets we open-source. One dataset, TwitterSG, labels (dis)agreements using engagements between users via tweets to derive topic-informed, signed edges. The other, BirdwatchSG, leverages community reports on misinformation and misleading content. On TwitterSG and BirdwatchSG, SEM shows a 39% and 26% error reduction respectively against strong baselines.
翻译:社会网络分析中的一个关键挑战是了解图中人们在一大批专题上的位置或立场。虽然过去的工作在社交网络中使用签名的图表模拟了(不同)观点,但这些方法并没有在一系列相关主题上模拟了协议模式。例如,对一个专题的分歧可能使相关主题更有可能产生分歧(或协议 ) 。 我们建议采用Stance 嵌入模型(SEM), 该模型共同学习将每个用户和主题嵌入每个主题的有区别边缘类型的签名社会图表中的主题嵌入。 通过联合学习用户和专题嵌入,SEM能够进行冷启动主题定位,预测一个用户在未观察到其参与的专题上的立场。我们用两个大型Twitter签名的图表数据集展示了SEM的有效性。一个数据集、TwitterSG、标签(不同)协议(不同)使用推特用户之间的接触,以获得专题信息、签名的边缘。另一个是BirdwatchSG, 利用社区关于错误和误导性内容的报告。在TwitterSG和BirwatchSG上,SEM分别显示39%和26%的基线。