Multi-task Gaussian process (MTGP) is a well-known non-parametric Bayesian model for learning correlated tasks effectively by transferring knowledge across tasks. But current MTGPs are usually limited to the multi-task scenario defined in the same input domain, leaving no space for tackling the heterogeneous case, i.e., the features of input domains vary over tasks. To this end, this paper presents a novel heterogeneous stochastic variational linear model of coregionalization (\texttt{HSVLMC}) model for simultaneously learning the tasks with varied input domains. Particularly, we develop the stochastic variational framework with Bayesian calibration that (i) takes into account the effect of dimensionality reduction raised by domain mappings in order to achieve effective input alignment; and (ii) employs a residual modeling strategy to leverage the inductive bias brought by prior domain mappings for better model inference. Finally, the superiority of the proposed model against existing LMC models has been extensively verified on diverse heterogeneous multi-task cases and a practical multi-fidelity steam turbine exhaust problem.
翻译:多任务 Gaussian 进程( MTGP) 是一个众所周知的非参数性贝耶斯模式, 用于通过跨任务转让知识来有效学习相关任务。 但是,当前的MTGP通常局限于同一输入领域定义的多任务情景,没有解决不同情况的空间,即输入领域的特点因任务而异。 为此,本文件展示了一种创新的多类随机可变线性模式(\ textt{HSVLMC}) 模式,用于同时学习不同输入领域的任务。 特别是,我们开发了与Bayesian校准的Stochetic变异框架,(i) 该框架考虑到区域测绘带来的维度减少效应,以便实现有效的投入协调;以及(ii) 使用残余模型战略,利用先前域绘图带来的诱导偏差,以更好地进行模型推断。 最后,提议的模式相对于现有LMC模式的优越性,已在多种不同多任务案例和实用的多纤维蒸气轮机尾气问题上得到了广泛核实。