In this paper we study dynamic averaging load balancing on general graphs. We consider infinite time and dynamic processes, where in every step new load items are assigned to randomly chosen nodes. A matching is chosen, and the load is averaged over the edges of that matching. We analyze the discrete case where load items are indivisible, moreover our results also carry over to the continuous case where load items can be split arbitrarily. For the choice of the matchings we consider three different models, random matchings of linear size, random matchings containing only single edges, and deterministic sequences of matchings covering the whole graph. We bound the discrepancy, which is defined as the difference between the maximum and the minimum load. Our results cover a broad range of graph classes and, to the best of our knowledge, our analysis is the first result for discrete and dynamic averaging load balancing processes. As our main technical contribution we develop a drift result that allows us to apply techniques based on the effective resistance in an electrical network to the setting of dynamic load balancing.


翻译:在本文中,我们研究一般图形的平均动态负载平衡。 我们考虑无限的时间和动态过程, 每一步新负载项目都被指定为随机选择的节点。 选择匹配, 负载平均在匹配的边缘上。 我们分析负载项目不可分割的离散案例, 此外, 我们的结果还传递到可任意分割负载项目的连续案例。 为了选择匹配, 我们考虑三种不同的模型, 随机匹配线性大小, 随机匹配仅包含单边, 以及覆盖整个图形的定式匹配序列 。 我们将差异绑定为最大和最小负载之间的差别。 我们的结果覆盖了广泛的图表类别, 并且据我们所知, 我们的分析是离散和动态平均负载平衡过程的第一个结果。 作为我们的主要技术贡献, 我们开发了一个漂移结果, 使我们能够应用基于电子网络有效阻力的技术, 来设定动态负载平衡。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员