Service robots in the future need to execute abstract instructions such as "fetch the milk from the fridge". To translate such instructions into actionable plans, robots require in-depth background knowledge. With regards to interactions with doors and drawers, robots require articulation models that they can use for state estimation and motion planning. Existing frameworks model articulated connections as abstract concepts such as prismatic, or revolute, but do not provide a parameterized model of these connections for computation. In this paper, we introduce a novel framework that uses symbolic mathematical expressions to model articulated structures -- robots and objects alike -- in a unified and extensible manner. We provide a theoretical description of this framework, and the operations that are supported by its models, and introduce an architecture to exchange our models in robotic applications, making them as flexible as any other environmental observation. To demonstrate the utility of our approach, we employ our practical implementation Kineverse for solving common robotics tasks from state estimation and mobile manipulation, and use it further in real-world mobile robot manipulation.
翻译:服务机器人今后需要执行“从冰箱中提取牛奶”等抽象指令。为了将这些指令转化为可操作的计划,机器人需要深入的背景知识。关于与门和抽屉的互动,机器人需要他们可以用于国家估计和运动规划的表达模型。现有的框架模型将连接表述为抽象概念,如悬浮或再演化,但不提供这些连接的参数化模型来进行计算。在本文件中,我们引入了一个新的框架,以统一和可扩展的方式对模型表达的结构 -- -- 机器人和物体 -- -- 采用象征性的数学表达方式。我们从理论上描述了这一框架及其模型所支持的操作,并引入了在机器人应用中交流模型的架构,使其与其他环境观察一样灵活。为了展示我们的方法的效用,我们运用了我们的实际实施 Kinevers 来解决国家估计和移动操纵中常见的机器人任务,并在现实世界移动机器人操作中进一步使用它。