项目名称: 柔性障碍物富集环境中的三维自主导航研究

项目编号: No.61305105

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 自动化技术、计算机技术

项目作者: 邱权

作者单位: 北京市农林科学院

项目金额: 23万元

中文摘要: 机器人的自主导航能力是影响其应用领域拓展进程的关键因素。现有的自主导航理论对障碍物的材质特性关注度不够,忽略了质地柔软、可接触式通过的障碍物在提升导航优化性方面的重要作用,极大制约了机器人在树林、农田等场景中的应用表现。本项目引入柔性障碍物的概念,探索建立一套柔性障碍物富集环境下的移动机器人自主导航方法体系:组合使用"彩色测距"和表面反射能量分析技术,实现对柔性障碍物的有效探测与识别;提出兼顾障碍物碰撞特性、受保护程度的通过代价函数构建方法,实现柔性障碍物信息在三维环境模型中的合理表述;引入"接触式处理模式",形成柔性障碍物富集环境中的优化自主导航算法。项目提出的方法体系拓展了障碍物的定义,改变了单一的"躲避式"导航思路,提高了导航算法在柔性障碍物富集环境下的优化性能,是对机器人环境感知和优化决策能力的有益理论补充,有利于迅速扩大机器人的应用场景及应用方式,具有重要的科学意义和应用价值。

中文关键词: 自主导航;柔性障碍物;农业场景;机器视觉;激光测距仪

英文摘要: Autonomous navigation is an edge and hot research topic in robotics, which has a decisive role in the application-field expansion of robots. However, the existing algorithms of autonomous navigation do not pay enough attention on the rigidity and deformability of the obstacles, leading to the simplified assumption that all the obstacles are rigid. Under such an assumption, the navigation algorithm can only choose to sacrifice the optimality by avoiding all the obstacles, while some soft and deformable ones can be tackled in a touching manner. As a result, the navigation performances in some application scenes, such as the woods/farm with rich soft branches and the urban with lots of flags/curtains, are greatly decreased. To solve the problem, this project introduces the concept of "soft-and-deformable obstacles" and tries to build a complete solution framework for the autonomous navigation in the environments with rich soft-and-deformable obstacles. The framework consists of three parts: the detecting and recognition strategy, the three-dimensional expression method, and the navigation algorithm. To discriminate the soft-and-deformable obstacles from the rigid obstacles, we will use the RGB-D (red, green, blue and depth) sensor and the laser range founder in combination. The RGB-D sensor will be employed to obta

英文关键词: autonomous navigation;deformable obstacle;agricultural scene;machine vision;laser range finder

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】多机器人协同主动建图算法
专知会员服务
46+阅读 · 2022年4月3日
专知会员服务
37+阅读 · 2021年9月7日
专知会员服务
10+阅读 · 2021年8月8日
专知会员服务
34+阅读 · 2021年5月25日
专知会员服务
64+阅读 · 2021年5月21日
学习抓取柔性物体
TensorFlow
3+阅读 · 2021年7月5日
自动驾驶车载激光雷达技术现状分析
智能交通技术
16+阅读 · 2019年4月9日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Learning to execute or ask clarification questions
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
11+阅读 · 2018年4月25日
小贴士
相关VIP内容
【CVPR2022】多机器人协同主动建图算法
专知会员服务
46+阅读 · 2022年4月3日
专知会员服务
37+阅读 · 2021年9月7日
专知会员服务
10+阅读 · 2021年8月8日
专知会员服务
34+阅读 · 2021年5月25日
专知会员服务
64+阅读 · 2021年5月21日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员