Event cameras are bio-inspired sensors that offer advantages over traditional cameras. They work asynchronously, sampling the scene with microsecond resolution and producing a stream of brightness changes. This unconventional output has sparked novel computer vision methods to unlock the camera's potential. We tackle the problem of event-based stereo 3D reconstruction for SLAM. Most event-based stereo methods try to exploit the camera's high temporal resolution and event simultaneity across cameras to establish matches and estimate depth. By contrast, we investigate how to estimate depth without explicit data association by fusing Disparity Space Images (DSIs) originated in efficient monocular methods. We develop fusion theory and apply it to design multi-camera 3D reconstruction algorithms that produce state-of-the-art results, as we confirm by comparing against four baseline methods and testing on a variety of available datasets.
翻译:事件相机是生物感应器,比传统相机更具有优势。 它们不同步地工作, 以微秒分辨率对现场进行取样, 并产生一连串亮度变化。 这种非常规产出激发了新型的计算机视觉方法来释放相机的潜力。 我们解决了以事件为基础的立体立体立体重建SLAM的问题。 大多数事件立体法试图利用相机的高时间分辨率和事件在摄像机之间的同时性来建立匹配和估计深度。 相反, 我们研究如何在没有明确数据关联的情况下通过使用源自高效单眼方法的分散空间图像来估计深度。 我们开发聚变理论, 并将其应用于设计产生最新结果的多摄像头 3D重建算法, 我们通过比较四种基线方法和对各种可用数据集的测试来证实这一点。