We prove several new results on the Hamming weight of bounded uniform and small-bias distributions. We exhibit bounded-uniform distributions whose weight is anti-concentrated, matching existing concentration inequalities. This construction relies on a recent result in approximation theory due to Erd\'eyi (Acta Arithmetica 2016). In particular, we match the classical tail bounds, generalizing a result by Bun and Steinke (RANDOM 2015). Also, we improve on a construction by Benjamini, Gurel-Gurevich, and Peled (2012). We give a generic transformation that converts any bounded uniform distribution to a small-bias distribution that almost preserves its weight distribution. Applying this transformation in conjunction with the above results and others, we construct small-bias distributions with various weight restrictions. In particular, we match the concentration that follows from that of bounded uniformity and the generic closeness of small-bias and bounded-uniform distributions, answering a question by Bun and Steinke (RANDOM 2015). Moreover, these distributions are supported on only a constant number of Hamming weights. We further extend the anti-concentration constructions to small-bias distributions perturbed with noise, a class that has received much attention recently in derandomization. Our results imply (but are not implied by) a recent result of the authors (CCC 2024), and are based on different techniques. In particular, we prove that the standard Gaussian distribution is far from any mixture of Gaussians with bounded variance.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员