Microfluidic Live-Cell Imaging (MLCI) yields data on microbial cell factories. However, continuous acquisition is challenging as high-throughput experiments often lack real-time insights, delaying responses to stochastic events. We introduce three components in the Experiment Automation Pipeline for Event-Driven Microscopy to Smart Microfluidic Single-Cell Analysis (EAP4EMSIG): a fast, accurate Multi-Layer Perceptron (MLP)-based autofocusing method predicting the focus offset, an evaluation of real-time segmentation methods and a real-time data analysis dashboard. Our MLP-based autofocusing achieves a Mean Absolute Error (MAE) of 0.105 $\mu$m with inference times from 87 ms. Among eleven evaluated Deep Learning (DL) segmentation methods, Cellpose reached a Panoptic Quality (PQ) of 93.36 %, while a distance-based method was fastest (121 ms, Panoptic Quality 93.02 %).
翻译:暂无翻译