In this manuscript we consider Kernel Ridge Regression (KRR) under the Gaussian design. Exponents for the decay of the excess generalization error of KRR have been reported in various works under the assumption of power-law decay of eigenvalues of the features co-variance. These decays were, however, provided for sizeably different setups, namely in the noiseless case with constant regularization and in the noisy optimally regularized case. Intermediary settings have been left substantially uncharted. In this work, we unify and extend this line of work, providing characterization of all regimes and excess error decay rates that can be observed in terms of the interplay of noise and regularization. In particular, we show the existence of a transition in the noisy setting between the noiseless exponents to its noisy values as the sample complexity is increased. Finally, we illustrate how this crossover can also be observed on real data sets.
翻译:在这份手稿中,我们考虑了高山设计下的Kernel脊回归(KRR) 。 在假设各种工程中,根据共同变异特征的精华值的电法衰减假设,已经报告了KRR超常一般化错误衰减的指数。然而,这些衰减为规模不同的设置提供了条件,即无噪音的常规化和噪音最优化的常规化案例。中间环境在很大程度上没有被探索。在这项工作中,我们统一和扩展了这一工作线,提供了所有制度和超大错误衰变率的特征,可以从噪音和正规化的相互作用中观察到。特别是,我们显示了无噪音的显露出其噪音的声势随着样品复杂性的增加而呈现出其噪音值之间的变化。最后,我们说明如何在真实的数据集中也能观察到这种交叉现象。