In this paper we propose Fed-ensemble: a simple approach that bringsmodel ensembling to federated learning (FL). Instead of aggregating localmodels to update a single global model, Fed-ensemble uses random permutations to update a group of K models and then obtains predictions through model averaging. Fed-ensemble can be readily utilized within established FL methods and does not impose a computational overhead as it only requires one of the K models to be sent to a client in each communication round. Theoretically, we show that predictions on newdata from all K models belong to the same predictive posterior distribution under a neural tangent kernel regime. This result in turn sheds light onthe generalization advantages of model averaging. We also illustrate thatFed-ensemble has an elegant Bayesian interpretation. Empirical results show that our model has superior performance over several FL algorithms,on a wide range of data sets, and excels in heterogeneous settings often encountered in FL applications.


翻译:在本文中,我们提出了美联储的组合:一种简单的方法,将模型集合到联合学习(FL)中。 美联储的组合使用随机的变相来更新一组K型模型,然后通过平均模型获得预测。 美联储的组合可以很容易地在既定的FL方法中使用,而不会强加计算性间接费用,因为它仅仅要求在每轮通信中将K型模型之一发送给客户。理论上,我们显示所有K型模型的新数据的预测都属于同一神经对流内核系统下的预测远地点分布。这反过来又揭示了模型平均的通用优势。 我们还说明,Fed-组合有一个优雅的贝叶斯语解释。 经验性结果显示,我们的模型在多种FL算法上表现优于多个FL算法,涉及广泛的数据集,以及在FL应用中经常遇到的多元环境中的优异特性。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2020年5月1日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员