The prevailing thinking is that orthogonal weights are crucial to enforcing dynamical isometry and speeding up training. The increase in learning speed that results from orthogonal initialization in linear networks has been well-proven. However, while the same is believed to also hold for nonlinear networks when the dynamical isometry condition is satisfied, the training dynamics behind this contention have not been thoroughly explored. In this work, we study the dynamics of ultra-wide networks across a range of architectures, including Fully Connected Networks (FCNs) and Convolutional Neural Networks (CNNs) with orthogonal initialization via neural tangent kernel (NTK). Through a series of propositions and lemmas, we prove that two NTKs, one corresponding to Gaussian weights and one to orthogonal weights, are equal when the network width is infinite. Further, during training, the NTK of an orthogonally-initialized infinite-width network should theoretically remain constant. This suggests that the orthogonal initialization cannot speed up training in the NTK (lazy training) regime, contrary to the prevailing thoughts. In order to explore under what circumstances can orthogonality accelerate training, we conduct a thorough empirical investigation outside the NTK regime. We find that when the hyper-parameters are set to achieve a linear regime in nonlinear activation, orthogonal initialization can improve the learning speed with a large learning rate or large depth.


翻译:流行的思维是, 矩形加权对于执行动态等离子测量和加速培训至关重要。 线性网络的正向初始化导致的学习速度的提高已经得到很好的证明。 然而, 虽然在动态等离子测量条件得到满足的情况下, 据认为对非线性网络也持有同样的认识, 但这一争论背后的培训动态还没有得到充分探讨。 在这项工作中, 我们研究一系列结构中超大网络的动态, 包括完全连接网络( FCNs ) 和通过神经红心内核( NTK ) 以正向初始化或直线初始化速度的神经网络( CNNCs ) 。 通过一系列提议和 Lemmmas, 我们证明, 当动态的等同于高斯的重量和直径的重量时, 两个非线性网络的网络是相等的。 此外, 在培训过程中, 一个正向初始化的初始化和直线性网络网络网络网络网络化网络的动态, 从理论上来说应该保持恒定。 这表明, 通过神经初始化初始化的初始化和直径直线性初始化的初始化网络化网络化网络化, 将无法在不断加速进行, 深度的深度研究中, 。

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
30+阅读 · 2020年4月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
7+阅读 · 2021年5月13日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员